Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fortson, Lucy; Crowston, Kevin; Kloetzer, Laure; Ponti, Marisa (Ed.)Citizen science has become a valuable and reliable method for interpreting and processing big datasets, and is vital in the era of ever-growing data volumes. However, there are inherent difficulties in the generating labels from citizen scientists, due to the inherent variability between the members of the crowd, leading to variability in the results. Sometimes, this is useful — such as with serendipitous discoveries, which corresponds to rare/unknown classes in the data — but it might also be due to ambiguity between classes. The primary issue is then to distinguish between the intrinsic variability in the dataset and the uncertainty in the citizen scientists’ responses, and leveraging that to extract scientifically useful relationships. In this paper, we explore using a neural network to interpret volunteer confusion across the dataset, to increase the purity of the downstream analysis. We focus on the use of learned features from the network to disentangle feature similarity across the classes, and the ability of the machines’ “attention” in identifying features that lead to confusion. We use data from Jovian Vortex Hunter, a citizen science project to study vortices in Jupiter’s atmosphere, and find that the latent space from the model helps effectively identify different sources of image-level features that lead to low volunteer consensus. Furthermore, the machine’s attention highlights features corresponding to specific classes. This provides meaningful image-level feature-class relationships, which is useful in our analysis for identifying vortex-specific features to better understand vortex evolution mechanisms. Finally, we discuss the applicability of this method to other citizen science projects.more » « lessFree, publicly-accessible full text available December 9, 2025
-
Fortson, Lucy; Crowston, Kevin; Kloetzer, Laure; Ponti, Marisa (Ed.)In the era of rapidly growing astronomical data, the gap between data collection and analysis is a significant barrier, especially for teams searching for rare scientific objects. Although machine learning (ML) can quickly parse large data sets, it struggles to robustly identify scientifically interesting objects, a task at which humans excel. Human-in-the-loop (HITL) strategies that combine the strengths of citizen science (CS) and ML offer a promising solution, but first, we need to better understand the relationship between human- and machine-identified samples. In this work, we present a case study from the Galaxy Zoo: Weird & Wonderful project, where volunteers inspected ~200,000 astronomical images—processed by an ML-based anomaly detection model—to identify those with unusual or interesting characteristics. Volunteer-selected images with common astrophysical characteristics had higher consensus, while rarer or more complex ones had lower consensus. This suggests low-consensus choices shouldn’t be dismissed in further explorations. Additionally, volunteers were better at filtering out uninteresting anomalies, such as image artifacts, which the machine struggled with. We also found that a higher ML-generated anomaly score that indicates images’ low-level feature anomalousness was a better predictor of the volunteers’ consensus choice. Combining a locus of high volunteer-consensus images within the ML learnt feature space and anomaly score, we demonstrated a decision boundary that can effectively isolate images with unusual and potentially scientifically interesting characteristics. Using this case study, we lay important guidelines for future research studies looking to adapt and operationalize human-machine collaborative frameworks for efficient anomaly detection in big data.more » « lessFree, publicly-accessible full text available December 9, 2025
An official website of the United States government
